Main content area

Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies

Katz, Daniel S. W., Ibáñez, Inés
Ecology 2016 v.97 no.9 pp. 2331-2341
Acer rubrum, Carya glabra, Liriodendron tulipifera, Quercus alba, Quercus velutina, Robinia pseudoacacia, adults, biocenosis, climate change, foliar diseases, herbivores, invertebrates, natural enemies, planting, prediction, seedlings, trees
Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450‐km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems.