Main content area

Effects of Organogel Hardness and Formulation on Acceptance of Frankfurters

Barbut, S., Wood, J., Marangoni, A.G.
Journal of food science 2016 v.81 no.9 pp. C2183
beef, canola oil, cellulose, hardness, hot dogs, juiciness, mechanical properties, sensation, sensory evaluation, shear stress, tallow, texture, vegetable oil
Different organogel formulations used as beef fat (BF) replacement (0%, 20%, 40%, 60%, and 80%) were utilized to optimize the mechanical properties of frankfurters. Organogels, made of canola oil (CO), included different concentrations of ethyl cellulose (EC) and sorbitan monostearate (SMS). They consisted of: 8% EC + 1.5% SMS referred to as organogel‐I (OG‐I), 8% EC + 3.0% SMS (OG‐II), and 10% EC + 1.5% SMS (OG‐III), which were found promising in a previous study when used at 100% replacement. Replacement of BF with organogels at all levels could bring down the very high hardness values (texture profile analysis and sensory) of frankfurters prepared using CO by itself, relative to the BF control. OG‐I and OG‐II quantity had no significant effect on hardness and springiness, being similar in many cases to the BF and lower than the CO control. Shear force values of all organogel treatments were not significantly different from one another, and were between the BF and CO controls. Smokehouse yield showed a pattern of decreasing losses with increasing organogel replacement level. Sensory analysis revealed that using CO by itself significantly increased hardness, but structuring the oil (via organogelation), brought it down to the BF control value in all OG‐I and OG‐II formulations. Juiciness was significantly reduced by using liquid oil but increased with raising the amount of organogels. Oiliness sensation increased with higher organogel substitution and was actually higher than the beef control. The study demonstrates the potential use of vegetable oil structuring in replacing the more saturated BF in emulsion‐type meat products.