Main content area

Fungicide Resistance Profiling in Botrytis cinerea Populations from Blueberry in California and Washington and Their Impact on Control of Gray Mold

Saito, S., Michailides, T. J., Xiao, C. L.
Plant disease 2016 v.100 no.10 pp. 2087-2093
risk, boscalid, phenotype, Botrytis cinerea, fludioxonil, cyprodinil, pyraclostrobin, fenhexamid, flowers, introns, fungicide resistance, resistance management, blueberries, gray mold, Central Valley of California, Washington (state)
Gray mold caused by Botrytis cinerea is a major postharvest disease of blueberry grown in the Central Valley of California and western Washington State. Sensitivities to boscalid, cyprodinil, fenhexamid, fludioxonil, and pyraclostrobin, representing five different fungicide classes, were examined for 249 (California) and 106 (Washington) B. cinerea isolates recovered from decayed blueberry fruit or flowers. In California and Washington, 7 and 17 fungicide-resistant phenotypes, respectively, were detected: 66 and 49% of the isolates were resistant to boscalid, 20 and 29% were moderately resistant to cyprodinil, 29 and 29% were resistant to fenhexamid, and 66 and 55% were resistant to pyraclostrobin. All isolates from California were sensitive to fludioxonil, whereas 70% of the isolates from Washington showed reduced sensitivity to fludioxonil. In California, 26 and 30% of the isolates were resistant to two and three classes of fungicides, respectively. In Washington, 31, 14, 16, and 9% of the isolates were resistant to two, three, four, and five classes of fungicides, respectively. Inherent risk of the development of resistance to quinone outside inhibitor (QoI) fungicides was assessed by detecting the presence of the Bcbi-143/144 intron in gene cytb. The intron was detected in 11.8 and 40% of the isolates in California and Washington, respectively, suggesting that the risk of QoI resistance is higher in California than in Washington. On detached blueberry fruit inoculated with 11 isolates exhibiting different fungicide-resistant phenotypes, most fungicides failed to control gray mold on fruit inoculated with the respective resistant phenotypes but the mixture of cyprodinil and fludioxonil was effective against all fungicide-resistant phenotypes tested. Our findings would be useful in designing and implementing fungicide resistance management spray programs for control of gray mold in blueberry.