Main content area

A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum

Edaye, Sonia, Reiling, Sarah J., Leimanis, Mara L., Wunderlich, Juliane, Rohrbach, Petra, Georges, Elias
Molecular and biochemical parasitology 2014 v.195 pp. 34-42
P-glycoproteins, Plasmodium falciparum, chloroquine, drug interactions, drug resistance, drug therapy, fluorescent dyes, gene targeting, humans, inhibitory concentration 50, malaria, metabolites, mutants, mutation, pH, parasites, physiological transport, quinoline, solutes, substrate specificity, tropics, vacuoles, verapamil
Malaria is a major disease in the tropics where chemotherapy remains the main mode of treatment and as such the rise and spread of drug-resistant malaria can lead to human tragedy. Two membrane transport proteins, PfMDR1 (Plasmodium falciparum multidrug resistance protein 1) and PfCRT (P. falciparum chloroquine resistance transporter), have been shown to cause resistance to several antimalarials. Both PfMDR1 and PfCRT are localized to the digestive vacuolar membrane and appear to regulate the transport of drugs and physiological metabolites. In this study we have used MK571, a 2-amino quinoline, to explore its interaction with PfMDR1 and PfCRT in chloroquine-sensitive and -resistant strains of P. falciparum. Our results show that chloroquine-resistant strains (e.g., K1, Dd2, and 7G8) are consistently more sensitive to MK571 than chloroquine-sensitive strains (e.g., 3D7, 106/1 and D10). This association, however, was not maintained with the chloroquine-resistant strain FCB which IC50 value was similar to chloroquine-sensitive strains. Moreover, the susceptibility of chloroquine-sensitive and -resistant strains to MK571 does not correlate with mutated PfCRT, nor is it reversible with verapamil; but correlates with mutations in PfMDR1. Furthermore, MK571 appears to target the parasite's digestive vacuole (DV), as demonstrated by the ability of MK571 to: (1) block the accumulation of the fluorescent dye Fluo-4 AM, a PfMDR1 substrate, into the digestive vacuole; (2) reduce the transvacuolar pH gradient; and (3) inhibit the formation of β-hematin in vitro. Moreover, the presence of non-toxic concentrations of MK571 sensitized both chloroquine-sensitive and -resistant parasites to mefloquine and halofantrine, likely by competing against PfMDR1-mediated sequestering of the drugs into the DV compartment and away from the drugs’ cytosolic targets. Our data, nevertheless, found only a minimal decrease in MK571 IC50 value in FCB parasite which second pfmdr1 copy was inactivated via gene disruption. Taken together, the findings of this study suggest that MK571 interacts with native and mutant PfMDR1 and modulates the import of drugs or solutes into the parasite's DV and, as such, MK571 may be a useful tool in the characterization of PfMDR1 drug interactions and substrate specificity.