PubAg

Main content area

Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF-β1/Smad pathways

Author:
Wang, Ying, Liu, Dan, Zhao, Huan, Jiang, Huixing, Luo, Chen, Wang, Min, Yin, Hongping
Source:
Molecular and Cellular Endocrinology 2014 v.382 pp. 979-988
ISSN:
0303-7207
Subject:
Ophiocordyceps sinensis, cell proliferation, dose response, humans, mitogen-activated protein kinase, platelet-derived growth factor, polysaccharides, renal failure, signal transduction, transforming growth factor beta 1
Abstract:
CPS-2, a Cordyceps sinensis polysaccharide, has been demonstrated to have significant therapeutic activity against chronic renal failure. However, little is known about the underlying molecular mechanism. In this study, we found that CPS-2 could inhibit PDGF-BB-induced human mesangial cells (HMCs) proliferation in a dose-dependent manner. In addition, CPS-2 notably suppressed the expression of α-SMA, PDGF receptor-beta (PDGFRβ), TGF-β1, and Smad 3 in PDGF-BB-treated HMCs. Furthermore, PDGF-BB-stimulated ERK activation was significantly inhibited by CPS-2, and this inhibitory effect was synergistically potentiated by U0126. CPS-2 could prevent the PDGFRβ promoter activity induced by PDGF-BB, and return expression of PDGFRβ, TGF-β1, and TGFβRI to normal levels while cells were under PDGFRβ and ERK silencing conditions and transfected with DN-ERK. Taken together, these findings demonstrated that CPS-2 reduces PDGF-BB-induced cell proliferation through the PDGF/ERK and TGF-β1/Smad pathways, and it may have bi-directional regulatory effects on the PDGF/ERK cellular signaling pathway.
Agid:
5522564