PubAg

Main content area

Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana

Author:
ZENG, CHANGYING, HAN, YANLAI, SHI, LEI, PENG, LISHUN, WANG, YUNHUA, XU, FANGSEN, MENG, JINLING
Source:
Plant, cell and environment 2008 v.31 no.1 pp. 112-122
ISSN:
0140-7791
Subject:
Arabidopsis thaliana, boron, chromosome mapping, epistasis, genes, genetic relationships, genetic variation, inbred lines, molecular cloning, nutrient deficiencies, physiological response, plant micronutrients, plant nutrition, quantitative trait loci, seed productivity, seed yield, transgressive segregation
Abstract:
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B efficiency coefficient (BEC) and seed yield under low B conditions (SYLB) were investigated by solution culture in two separate experiments in an Arabidopsis recombinant inbred line (RIL) population. Both of the traits studied exhibited high transgressive variation in the RIL population, and, in total, five and three QTL were identified for BEC and SYLB, respectively. Three of the five QTL, including the QTL, AtBE1-2, that has a large effect on the BEC, were found at the interval of the corresponding QTL for SYLB in both experiments. The close genetic relationship between BEC and SYLB was further confirmed by conditional QTL mapping in the RIL population and unconditional QTL mapping in an AtBE1-2-segregated F₂ population. Epistatic interactions for the tested traits were analysed, and were found to be widespread in the detected QTL of Arabidopsis in the RIL population. Comparison of the QTL interval for B efficiency with reported B-related genes showed that 10 B-related genes, together with one BOR1 homolog (BOR5, At1g74810) were located in the QTL region of AtBE1-2. These results suggest that natural variation in B efficiency in Arabidopsis has a complex molecular basis. They also provide a basis for fine mapping and cloning of the B-efficiency genes, with the ultimate aim of discovering the physiological mechanism of action of the genes.
Agid:
554540