Main content area

Alleviation of selenium toxicity in Brassica juncea L.: salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts

Gupta, Shikha, Gupta, Meetu
Protoplasma 2016 v.253 no.6 pp. 1515-1528
Brassica juncea, catalase, chlorophyll, cysteine, exposure duration, genes, growth retardation, humans, hydroponics, leaves, lipid peroxidation, messenger RNA, proline, salicylic acid, seedlings, selenium, superoxide dismutase, toxicity
The present work reveals the response of different doses of selenium (Se) and alleviating effect of salicylic acid (SA) on Se-stressed Brassica juncea seedlings. Selenium, a micronutrient, is essential for both humans and animals but is toxic at higher doses. Its beneficial role for the survival of plants, however, is still debatable. On the other hand, SA, a phenolic compound, is known to have specific responses under environmental stresses. Experiments were conducted using leaves of hydroponically grown seedlings of Pusa bold (PB) variety of B. juncea, treated with different concentrations of Se (50, 150, 300 μM) for 24- and 96-h exposure times. Increasing Se concentrations inhibited growth and, caused lipid peroxidation, concomitantly increased stress modulators (proline, cysteine, SOD, CAT) along with sulfur-related gene transcripts (LAST, APS, APR, GR, OASL, MT-2, PCS) in Brassica seedlings. On the basis of the above studied parameters, maximum inhibition in growth was observed at 300 μM Se after 96-h exposure time. Further, co-application of SA along with 300 μM Se helped to mitigate Se stress, as shown by improved levels of growth parameters, toxicity indicators (chlorophyll, protein, MDA), stress modulators (proline, cysteine, SOD, and CAT), and expression of sulfur-related genes as compared to Se-treated seedlings alone. Altogether, this study revealed that Se + SA combinations improved seedling morphology and were effective in alleviation of Se stress in PB variety of B. juncea.