PubAg

Main content area

Incremental change in the set of coactive cortical assemblies enables mental continuity

Author:
Reser, Jared Edward
Source:
Physiology & behavior 2016 v.167 pp. 222-237
ISSN:
0031-9384
Subject:
algorithms, brain, consciousness, memory
Abstract:
This opinion article explores how sustained neural firing in association areas allows high-order mental representations to be coactivated over multiple perception-action cycles, permitting sequential mental states to share overlapping content and thus be recursively interrelated. The term “state-spanning coactivity” (SSC) is introduced to refer to neural nodes that remain coactive as a group over a given period of time. SSC ensures that contextual groupings of goal or motor-relevant representations will demonstrate continuous activity over a delay period. It also allows potentially related representations to accumulate and coactivate despite delays between their initial appearances. The nodes that demonstrate SSC are a subset of the active representations from the previous state, and can act as referents to which newly introduced representations of succeeding states relate. Coactive nodes pool their spreading activity, converging on and activating new nodes, adding these to the remaining nodes from the previous state. Thus, the overall distribution of coactive nodes in cortical networks evolves gradually during contextual updating. The term “incremental change in state-spanning coactivity” (icSSC) is introduced to refer to this gradual evolution. Because a number of associated representations can be sustained continuously, each brain state is embedded recursively in the previous state, amounting to an iterative process that can implement learned algorithms to progress toward a complex result. The longer representations are sustained, the more successive mental states can share related content, exhibit progressive qualities, implement complex algorithms, and carry thematic or narrative continuity. Included is a discussion of the implications that SSC and icSSC may have for understanding working memory, defining consciousness, and constructing AI architectures.
Agid:
5565743