U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: A case study of kinetics, mineralization and toxicity assessment of amoxicillin

Soliu O. Ganiyu, Nihal Oturan, Stéphane Raffy, Marc Cretin, Roseline Esmilaire, Eric van Hullebusch, Giovanni Esposito, Mehmet A. Oturan
Water research 2016 v.106 pp. 171-182
amoxicillin, aqueous solutions, boron, case studies, ceramics, cost effectiveness, electrochemistry, electrodes, hydrogen peroxide, hydroxyl radicals, mineralization, oxidation, pollutants, titanium, toxicity
Electrochemical degradation of aqueous solutions containing antibiotic amoxicillin (AMX) has been extensively studied in an undivided electrolytic cell using a sub-stoichiometric titanium oxide (Ti4O7) anode, elaborated by plasma deposition. Oxidative degradation of AMX by hydroxyl radicals was assessed as a function of applied current and was found to follow pseudo-first order kinetics. The use of carbon-felt cathode enhanced oxidation capacity of the process due to the generation of H2O2. Comparative studies at low current intensity using dimensional stable anode (DSA) and Pt anodes led to the lower mineralization efficiencies compared to Ti4O7 anode: 36 and 41% TOC removal for DSA and Pt respectively compared to 69% for Ti4O7 anode. Besides, the use of boron doped diamond (BDD) anode under similar operating conditions allowed reaching higher mineralization (94%) efficiency. Although Ti4O7 anode provides a lesser mineralization rate compared to BDD, it exhibits better performance compared to the classical anodes Pt and DSA and can constitutes an alternative to BDD anode for a cost effective electro-oxidation process. Moreover several aromatic and aliphatic oxidation reaction intermediates and inorganic end-products were identified and a plausible mineralization pathway of AMX involving these intermediates was proposed.