Main content area

The influence of urea and nitrate nutrients on the bioavailability and toxicity of nickel to Prorocentrum donghaiense (Dinophyta) and Skeletonema costatum (Bacillariophyta)

Huang, Xu-Guang, Lin, Xie-Chang, Li, Shun-xing, Xu, Song-Li, Liu, Feng-Jiao
Aquatic toxicology 2016 v.181 pp. 22-28
Prorocentrum, Skeletonema costatum, aquatic environment, bioavailability, biomechanics, chlorophyll, ecosystems, median effective concentration, nickel, nitrogen, nutrients, photosynthesis, primary productivity, toxicity, urea, urea nitrate
Nitrogen nutrients and nickel(Ni) are ubiquitous in aquatic environments, and they are important for primary production of ocean ecosystem. This study examined the interaction of nitrogen nutrients (specifically urea and nitrate) and Ni on chlorophyll (Chl a) concentration and photosynthesis parameters values of Prorocentrum donghaiense and Skeletonema costatum. The data presented here indicate that low concentration of Ni for P. donghaiense and S. costatum can enhance both Chl a concentration and photosynthesis parameters values when grown in urea containing environment. Despite this increase there was also an observed depression in both species tested when incubated in high concentration of Ni for P. donghaiense and S. costatum regardless of incubating in urea or nitrate. Additionally, EC50 values of Chl a and Fv/Fm for Ni at different time intervals were calculated in this study. These observations indicated that the Ni tolerance was higher in P. donghaiense as compared to S. costatum. The Ni tolerance of P. donghaiense incubated in urea was higher than that incubating in nitrate. The same phenomenon was not observed in S. costatum, which indicated that the influence of urea was dependent on the species investigated. Thus, urea input could impact Ni bioavailability and toxicity, and then affect the biodynamics thereafter.