PubAg

Main content area

Global trends of pCO2 across the Cretaceous–Paleogene boundary supported by the first Southern Hemisphere stomatal proxy-based pCO2 reconstruction

Author:
Steinthorsdottir, Margret, Vajda, Vivi, Pole, Mike
Source:
Palaeogeography, palaeoclimatology, palaeoecology 2016 v.464 pp. 143-152
ISSN:
0031-0182
Subject:
Lauraceae, carbon dioxide, fossils, herbaria, leaves, New Zealand
Abstract:
Reliable reconstructions of atmospheric carbon dioxide concentrations (pCO2) are required at higher resolution than currently available to help resolve the relationship between mass extinctions and changes in palaeo-pCO2 levels. Such reconstructions are needed: 1, at a high temporal resolution for constraining the pre- and post-extinction atmospheres; and 2, at a sufficient spatial resolution to constrain potential inter-hemispheric differences. Here we estimate pCO2 based on fossil Lauraceae leaf cuticle specimens derived from three localities with strata spanning the latest Cretaceous to the mid-Paleocene, including a new Cretaceous–Paleogene boundary (K–Pg) locality, in New Zealand. We use two independent methods of stomatal density-based pCO2 reconstructions; a transfer function calibrated using herbarium material and the stomatal ratio method, producing three calibration sets. Our results based on the mean values of each of the three calibration methods indicate pCO2 ranging between ca. 460 and 650ppm during the latest Cretaceous, falling precipitously to average values between ca. 360 and 430ppm across the K–Pg boundary, and further to ca. 305–320ppm in the mid-Paleocene. A ‘spike’ of extremely high pCO2 at the K–Pg could not be confirmed, but our results are, nonetheless, consistent with previously published pCO2 records from the Northern Hemisphere, and show that stomatal density worldwide was responding to significant changes in pCO2 across the K–Pg.
Agid:
5583791