PubAg

Main content area

Toward an Understanding of the Retinal Chromophore in Rhodopsin Mimics B

Author:
Huntress, Mark M., Gozem, Samer, Malley, Konstantin R., Jailaubekov, Askat E., Vasileiou, Chrysoula, Vengris, Mikas, Geiger, James H., Borhan, Babak, Schapiro, Igor, Larsen, Delmar S., Olivucci, Massimo
Source:
The Journal of physical chemistry 2013 v.117 no.35 pp. 10053-10070
ISSN:
1520-5207
Subject:
absorption, actuators, binding proteins, fluorescence, fluorescence emission spectroscopy, isomerization, models, mutants, quantum mechanics, retinoic acid, rhodopsin
Abstract:
Recently, a rhodopsin protein mimic was constructed by combining mutants of the cellular retinoic acid binding protein II (CRABPII) with an all-trans retinal chromophore. Here, we present a combined computational quantum mechanics/molecular mechanics (QM/MM) and experimental ultrafast kinetic study of CRABPII. We employ the QM/MM models to study the absorption (λᵃₘₐₓ), fluorescence (λᶠₘₐₓ), and reactivity of a CRABPII triple mutant incorporating the all-trans protonated chromophore (PSB-KLE-CRABPII). We also study the spectroscopy of the same mutant incorporating the unprotonated chromophore and of another double mutant incorporating the neutral unbound retinal molecule held inside the pocket. Finally, for PSB-KLE-CRABPII, stationary fluorescence spectroscopy and ultrafast transient absorption spectroscopy resolved two different evolving excited state populations which were computationally assigned to distinct locally excited and charge-transfer species. This last species is shown to evolve along reaction paths describing a facile isomerization of the biologically relevant 11-cis and 13-cis double bonds. This work represents a first exploratory attempt to model and study these artificial protein systems. It also indicates directions for improving the QM/MM models so that they could be more effectively used to assist the bottom-up design of genetically encodable probes and actuators employing the retinal chromophore.
Agid:
5589422