Main content area

A statistical and Wiener filtering algorithm based on the curvelet transform for SAR images

Huang, Shiqi, Huang, WenZhun, Zhang, Ting, Xu, Cong
International journal of remote sensing 2016 v.37 no.23 pp. 5581-5604
algorithms, geometry, image analysis, models, probability, remote sensing, synthetic aperture radar, wavelet
Synthetic aperture radar (SAR) images contain many kinds of noise. Speckle noise is multiplicative noise generated by the coherent imaging processes involved in SAR images and brings a great hindrance to the interpretation and application of SAR images, so it is considered the first major kind of noise in SAR images. SAR images also contain other incoherent additive noises generated by other factors, such as Gaussian noise, which are all considered the second major kind of noise. In order to reduce the impact of noise as much as possible, after an in-depth study of SAR imaging and noise-generating mechanism, curvelet transform principle, and Wiener filtering characteristic, a novel filtering method, here called the statistical and Wiener based on curvelet transform (SWCT) method is proposed. The SWCT algorithm processes two different kinds noise based on their properties. Specifically, it establishes a two-tiered filtering framework. For the first kind of noise, the algorithm uses the curvelet transform to decompose the SAR image and uses the statistical characteristics of the SAR image to generate an adaptive filtering threshold of the coefficients of decomposition to recover the original image. Then it filters every sub-band image at each decomposed scale and performs the inverse curvelet transform. The second kind of noise is directly filtered using the Wiener filter in the SWCT algorithm. Using the two-tiered filtering model and fully exploiting statistical characteristics, the SWCT algorithm not only reduces the amount of coherent speckle noise and incoherent noise effectively but also retains the edges and geometric details of the original SAR image. This is very good for target detection, classification, and recognition. Qualitative and quantitative tests were performed using simulated speckle noise, Gaussian noise, and real SAR images. The proposed SWCT algorithm was found to remove noise effectively and the performance of the algorithm was tested and compared to the mean filter, enhanced gamma-MAP (maximum a posterior probability) filter, wavelet transform filter, Wiener filter, and curvelet transform filter. Experiments carried out on real SAR images confirmed that the new method has a good filtering effect and can be used on different SAR images.