Main content area

Effects of De- and Rehydration on Food-conducting Cells in the Moss Polytrichum formosum: A Cytological Study

Annals of botany 2006 v.98 no.1 pp. 67-76
Polytrichum, cell walls, drugs, endoplasmic reticulum, microtubules, mitochondria, mosses and liverworts, oryzalin, plasmodesmata, plastids, rehydration, shoots, starch, stem cells, transmission electron microscopy, vacuoles
BACKGROUND: and Aims Moss food-conducting cells (leptoids and specialized parenchyma cells) have a highly distinctive cytology characterized by a polarized cytoplasmic organization and longitudinal alignment of plastids, mitochondria, endoplasmic reticulum and vesicles along endoplasmic microtubules. Previous studies on the desiccation biology of mosses have focused almost exclusively on photosynthetic tissues; the effects of desiccation on food-conducting cells are unknown. Reported here is a cytological study of the effects of de- and rehydration on food-conducting cells in the desiccation-tolerant moss Polytrichum formosum aimed at exploring whether the remarkable subcellular organization of these cells is related to the ability of mosses to survive desiccation. METHODS: Shoots of Polytrichum formosum were dehydrated under natural conditions and prepared for transmission and scanning electron microscopy using both standard and anhydrous chemical fixation protocols. Replicate samples were then fixed at intervals over a 24-h period following rehydration in either water or in a 10 μM solution of the microtubule-disrupting drug oryzalin. Key Results Desiccation causes dramatic changes; the endoplasmic microtubules disappear; the nucleus, mitochondria and plastids become rounded and the longitudinal alignment of the organelles is lost, though cytoplasmic polarity is in part retained. Prominent stacks of endoplasmic reticulum, typical of the hydrated condition, are replaced with membranous tubules arranged at right angles to the main cellular axis. The internal cytoplasm becomes filled with small vacuoles and the plasmalemma forms labyrinthine tubular extensions outlining newly deposited ingrowths of cell wall material. Whereas plasmodesmata in meristematic cells at the shoot apex and in stem parenchyma cells appear to be unaffected by dehydration, those in leptoids become plugged with electron-opaque material. Starch deposits in parenchyma cells adjoining leptoids are depleted in desiccated plants. Rehydration sees complete reestablishment over a 12- to 24-h period of the cytology seen in the control plants. Oryzalin effectively prevents leptoid recovery. CONCLUSIONS: The results point to a key role of the microtubular cytoskeleton in the rapid re-establishment of the elaborate cytoplasmic architecture of leptoids during rehydration. The reassembly of the endoplasmic microtubule system appears to dictate the time frame for the recovery process. The failure of leptoids to recover normal cytology in the presence of oryzalin further underlines the key role of the microtubules in the control of leptoid cytological organization.