Main content area

Biochar Affects Macronutrient Leaching from a Soilless Substrate

Altland, James E., Locke, James C.
Hortscience 2012 v.47 no.8 pp. 1136
Sphagnum, biochar, byproducts, containers, fertilizers, glass, greenhouse production, greenhouses, leachates, leaching, nitrates, nutrient retention, nutrient solutions, ornamental plants, perlite, phosphates, potassium, pyrolysis, soilless media
Byproducts of pyrolysis, known collectively as biochar, are becoming more common and readily available as ventures into alternative energy generation are explored. Little is known about how these materials affect greenhouse container substrates. The objective of this research was to determine the effect of one form of biochar on the nutrient retention and release in a typical commercial greenhouse container substrate. Glass columns filled with 85:15 sphagnum peatmoss:perlite (v:v) and amended with 0%, 1%, 5%, or 10% biochar were drenched with nutrient solution and leached to determine the impact of biochar on nutrient retention and leaching. Nitrate release curves were exponential and peaked lower, at later leaching events, and had higher residual nitrate release over time with increasing biochar amendment rate. This suggests that biochar might be effective in moderating extreme fluctuations of nitrate levels in container substrates over time. Peak phosphate concentration decreased with increasing biochar amendment rate, whereas time of peak release, girth of the peak curve, and final residual phosphate release all increased with increasing biochar amendment. Additional phosphate levels in leachates from biochar-amended substrates, in addition to the higher phosphate concentrations present in later leaching events, suggest this form of biochar as a modest source of phosphate for ornamental plant production. Although there was not sufficient potassium (K) from biochar to adequately replace all fertilizer K in plant production, increasing levels of this form of biochar will add a substantial quantity of K to the substrate and should be accounted for in fertility programs.