PubAg

Main content area

Settlements around pumping wells: analysis of influential factors and a simple calculation procedure

Author:
Pujades, Estanislao, De Simone, Silvia, Carrera, Jesus, Vázquez-Suñé, Enric, Jurado, Anna
Source:
Journal of hydrology 2017
ISSN:
0022-1694
Subject:
drawdown, hydraulic conductivity, models, modulus of elasticity, porous media, prediction, wells
Abstract:
Estimated and measured settlements caused by pumping rarely agree. Several reasons could explain this mismatch, including the influence of layering, the mechanical parameters used in the predictions, or the relationship between settlements and drawdown. We analyze the influence of the above issues by investigating the mechanical response of pumped elastic porous media under different conditions. A radially symmetric conceptual model is considered and several hydro-mechanical simulations are performed varying the boundary conditions, the size of the modeled domain and the presence or not of an overlying layer. The simplicity of the considered problem allows us to compare our results with existing analytical solutions, to identify the role of each variable on pumping settlements and to generalize the results. The most relevant results are as follows: (1) Settlements are proportional to drawdown only outside a circle of radius equal to 0.7 times the thickness of the pumped porous medium; inside, they are virtually constant, which leads to two simple procedures for computing pumping settlements. (2) Poorly conductive layers located above (or below) a pumped porous medium (with higher hydraulic conductivity) reduce and smooth settlements. (3) Boundary constraints affect the local specific storage coefficient and the displacements occurred. (4) The specific storage coefficient evaluated by interpreting pumping tests with the Cooper and Jacob method (1946) leads to overestimation of the actual Young’s Modulus of the soil. The main conclusion is that settlements are less differential than expected near pumping wells. Still, they must always be evaluated acknowledging the nature of layering, the boundary constraints and carefully selecting the mechanical parameters of the soil.
Agid:
5643742