U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination

Author:
Hong Zhang, Ke-Xin Zhou, Wei-Qing Wang, Shu-Jun Liu, Song-Quan Song
Source:
Journal of plant physiology 2017 v.213 pp. 134-147
ISSN:
0176-1617
Subject:
Populus canadensis, abscisic acid, amino acids, cycloheximide, energy, lipid metabolism, pentose phosphate cycle, protein folding, protein synthesis, proteolysis, proteome, seed germination, seeds, storage proteins, tricarboxylic acid cycle
Abstract:
Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, P<0.05) in abundance, and 101 protein spots were successfully identified. Most of the proteins were associated with cell defense and rescue (21%), storage proteins (21%), protein synthesis and destination (20%), metabolism (16%), and energy (14%). The germination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins.
Agid:
5654898