Main content area

A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening

Palapol, Yossapol, Ketsa, Saichol, Lin-Wang, Kui, Ferguson, Ian B., Allan, Andrew C.
Planta 2009 v.229 no.6 pp. 1323-1334
1-methylcyclopropene, Arabidopsis, Garcinia mangostana, biochemical pathways, biosynthesis, color, ethylene production, genes, pericarp, phylogeny, pigmentation, proteins, ripening, transcription factors, transcriptional activation, trees
Mangosteen (Garcinia mangostana L.) fruit undergo rapid red colour development, both on the tree and after harvest, resulting in high anthocyanin production in the pericarp. Here, we report the isolation of three full-length mangosteen MYB transcription factors (GmMYB1, GmMYB7 and GmMYB10) and all the anthocyanin biosynthetic pathway genes (GmPal to GmUFGT). Phylogenetic analysis at the protein level of the R2R3-MYB transcription factor family showed GmMYB10 had a high degree of similarity with production of anthocyanin pigment1 in Arabidopsis and as well as sequences from other plant species related to the elevation of anthocyanin pigmentation. In transient transactivation assays, GmMYB10, co-expressed with AtbHLH2, strongly activated the GmDFR and AtDFR promoters. Transcripts of GmMYB10 and GmUFGT were highly abundant with onset of pigmentation and subsequently during red colouration. Our results suggest that GmMYB10 plays an important role in regulating anthocyanin biosynthesis both on the tree and after harvest, while GmUFGT may be a key biosynthetic gene in mangosteen pigmentation. The expression patterns of GmMYB10 and GmUFGT correlated with ethylene production that increased linearly until stage 5 (dark purple) and decreased thereafter. 1-Methycyclopropene (1-MCP) clearly delayed red colouration with resulting down-regulation of GmMYB10. These results suggest that the effect of ethylene on anthocyanin biosynthesis may be via the regulation of GmMYB10 expression.