Main content area

Life cycle analysis of pistachio production in Greece

Bartzas, Georgios, Komnitsas, Kostas
The Science of the total environment 2017 v.595 pp. 13-24
Monte Carlo method, Pistacia vera, acidification, agricultural wastes, biochar, carbon sequestration, composts, computer software, cradle-to-gate, energy, environmental impact, eutrophication, global warming, life cycle inventory, ozone, ozone depletion, pistachios, renewable energy sources, soil quality, soil treatment, uncertainty analysis, waste utilization, Greece
In the present paper, a life cycle assessment (LCA) study regarding pistachio (Pistacia vera L.) cultivation in Aegina island, Greece, was performed to evaluate the energy use footprint and the associated environmental impacts. In this context, a detailed life cycle inventory was created based on site-survey data and used for a holistic cradle-to-farm gate LCA analysis using the GaBi 6.5 software. The main impact categories assessed were acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP) and cumulative energy demand (CED). In order to reveal the main environmental concerns pertinent to pistachio production and in turn propose measures for the reduction of environmental and energetic impacts, three scenarios were compared, namely the Baseline scenario (BS) that involves current cultivation practices, the Green Energy (GE) scenario that involves the use of biological fertilizers i.e. compost, and the Waste Utilization (WU) scenario that involves the production of biochar from pistachio and other agricultural wastes and its subsequent soil application to promote carbon sequestration and improve soil quality. Based on the results of this study, the use of compost for fertilization (GE scenario), which results in approximately 9% savings in terms of energy consumption and the five environmental impact categories studied compared to BS scenario, is considered a promising alternative cultivation strategy. Slightly higher savings (10% on average) in terms of the five calculated environmental impact categories, compared to the BS scenario, were indicated when the WU scenario was considered. Regarding energy consumption, the WU scenario results in minor increase, 3%, compared to the BS scenario. Results of uncertainty analysis performed using the Monte Carlo technique and contribution analysis showed that GE and WU scenarios offer reliable and significant eco-profile improvements for pistachio production in the study area compared to the current situation.