Main content area

Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power

Zhang, Huifeng, Yue, Dong, Xie, Xiangpeng, Dou, Chunxia, Sun, Feng
Energy 2017 v.122 pp. 748-766
models, probability, probability distribution, water balance, wind power
With the integration of wind power and photovoltaic power, optimal operation of hydrothermal power system becomes great challenge due to its non-convex, stochastic and complex-coupled constrained characteristics. This paper extends short-term hydrothermal system optimal model into short-term hydrothermal optimal scheduling of economic emission while considering integrated intermittent energy resources (SHOSEE-IIER). For properly solving SHOSEE-IIER problem, a gradient decent based multi-objective cultural differential evolution (GD-MOCDE) is proposed to improve the optimal efficiency of SHOSEE-IIER combined with three designed knowledge structures, which mainly enhances search ability of differential evolution in the shortest way. With considering those complex-coupled and stochastic constraints, a heuristic constraint-handling measurement is utilized to tackle with them both in coarse and fine tuning way, and probability constraint-handling procedures are taken to properly handle those stochastic constraints combined with their probability density functions. Ultimately, those approaches are implemented on five test systems, which testify the optimization efficiency of proposed GD-MOCDE and constraint-handling efficiency for system load balance, water balance and stochastic constraint-handling measurements, those obtained results reveal that the proposed GD-MOCDE can properly solve the SHOSEE-IIER problem combined with those constraint-handling approaches.