PubAg

Main content area

A stochastic optimization approach to reduce greenhouse gas emissions from buildings and transportation

Author:
Karan, Ebrahim, Asadi, Somayeh, Ntaimo, Lewis
Source:
Energy 2016 v.106 pp. 367-377
ISSN:
0360-5442
Subject:
buildings, carbon dioxide, greenhouse gas emissions, greenhouse gases, models, power generation, probability distribution, solar energy, transportation, vehicles (equipment)
Abstract:
The magnitude of building- and transportation-related GHG (greenhouse gas) emissions makes the adoption of all-EVs (electric vehicles) powered with renewable power as one of the most effective strategies to reduce emission of GHGs. This paper formulates the problem of GHG mitigation strategy under uncertain conditions and optimizes the strategies in which EVs are powered by solar energy. Under a pre-specified budget, the objective is to determine the type of EV and power generation capacity of the solar system in such a way as to maximize GHG emissions reductions. The model supports the three primary solar systems: off-grid, grid-tied, and hybrid. First, a stochastic optimization model using probability distributions of stochastic variables and EV and solar system specifications is developed. The model is then validated by comparing the estimated values of the optimal strategies and actual values. It is found that the mitigation strategies in which EVs are powered by a hybrid solar system lead to the best cost-expected reduction of CO2 emissions ratio. The results show an accuracy of about 4% for mitigation strategies in which EVs are powered by a grid-tied or hybrid solar system and 11% when applied to estimate the CO2 emissions reductions of an off-grid system.
Agid:
5664607