U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: I. Soil-Inversion, High-Residue Cover Crops and Herbicide Regimes

Jatinder S. Aulakh, Andrew J. Price, Stephen F. Enloe, Edzard van Santen, Glenn Wehtje, Michael G. Patterson
Agronomy 2012 v.2 no.4 pp. 295-311
Amaranthus, Trifolium incarnatum, conservation tillage, cotton, cover crops, crop yield, fallow, field experimentation, fomesafen, glufosinate, herbicide resistance, plant density, rye
A three year field experiment was conducted to evaluate the role of soil-inversion, cover crops and herbicide regimes for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. The main plots were two soil-inversion treatments: fall inversion tillage (IT) and non-inversion tillage (NIT). The subplots were three cover crop treatments: crimson clover, cereal rye and winter fallow; and sub subplots were four herbicide regimes: preemergence (PRE) alone, postemergence (POST) alone, PRE + POST and a no herbicide check (None). The PRE herbicide regime consisted of a single application of pendimethalin at 0.84 kg ae ha−1 plus fomesafen at 0.28 kg ai ha−1. The POST herbicide regime consisted of a single application of glufosinate at 0.60 kg ai ha−1 plus S-metolachlor at 0.54 kg ai ha−1 and the PRE + POST regime combined the prior two components. At 2 weeks after planting (WAP) cotton, Palmer amaranth densities, both BR and WR, were reduced ≥90% following all cover crop treatments in the IT. In the NIT, crimson clover reduced Palmer amaranth densities >65% and 50% compared to winter fallow and cereal rye covers, respectively. At 6 WAP, the PRE and PRE + POST herbicide regimes in both IT and NIT reduced BR and WR Palmer amaranth densities >96% over the three years. Additionally, the BR density was reduced ≥59% in no-herbicide (None) following either cereal rye or crimson clover when compared to no-herbicide in the winter fallow. In IT, PRE, POST and PRE + POST herbicide regimes controlled Palmer amaranth >95% 6 WAP. In NIT, Palmer amaranth was controlled ≥79% in PRE and ≥95% in PRE + POST herbicide regimes over three years. POST herbicide regime following NIT was not very consistent. Averaged across three years, Palmer amaranth controlled ≥94% in PRE and PRE + POST herbicide regimes regardless of cover crop. Herbicide regime effect on cotton yield was highly significant; the maximum cotton yield was produced by the PRE + POST herbicide regime. Averaged over three years, the PRE, POST and PRE + POST cotton yields were about three times higher than no herbicide regime. In a conservation tillage production system, a PRE + glufosinate POST herbicide based regime coupled with a cereal rye cover crop may effectively control Palmer amaranth and maximize cotton yields.