Main content area

Serum Bile Acids Are Associated with Pathological Progression of Hepatitis B-Induced Cirrhosis

Wang, Xiaoning, Xie, Guoxiang, Zhao, Aihua, Zheng, Xiaojiao, Huang, Fengjie, Wang, Yixing, Yao, Chun, Jia, Wei, Liu, Ping
Journal of Proteome Research 2016 v.15 no.4 pp. 1126-1134
bile acids, biomarkers, blood serum, hepatitis, liver, liver cirrhosis, liver function, mass spectrometry, metabolomics, monitoring, patients, proteome, renal function, ultra-performance liquid chromatography
Recent metabonomic studies have identified an important role of bile acids in patients with liver cirrhosis. Serum bile acids, such as glycocholate (GCA), glycochenodeoxycholate (GCDCA), taurocholate (TCA), and taurochenodeoxycholate (TCDCA), increased significantly in liver cirrhosis patients. Our recently published urinary metabonomic study showed that glycocholate 3-glucuronide, taurohyocholate, TCA, glycolithocholate 3-sulfate, and glycoursodeoxycholate (GUDCA) were markedly increased in hepatitis B-induced cirrhotic patients (n = 63) compared with healthy controls (n = 31). The urinary levels of GUDCA were able to differentiate among three stages of cirrhotic patients with Child-Pugh (CP) score A, B, and C. In this study, we recruited two new cohorts of patients with hepatitis-B-induced cirrhosis and healthy control subjects and quantitatively profiled their serum bile acids using ultra-performance liquid chromatography triple quadrupole mass spectrometry. Serum bile acid profile and corresponding differential bile acids were characterized, in addition to the blood routine, liver, and renal function tests. The alterations of bile acids contributing to the intergroup variation between healthy controls and cirrhotic patients and among pathological stages of CP grade A, B and C were also investigated. Five bile acids, GCA, GCDCA, TCA, TCDCA, and GUDCA, were significantly altered among different stages of liver cirrhosis (n = 85), which was validated with an independent cohort of cirrhotic patients (n = 53). Our results show that dynamic alteration of serum bile acids is indicative of an exacerbated liver function, highlighting their potential as biomarkers for staging the liver cirrhosis and monitoring its progression.