Main content area

Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6′)Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011

George, Jaimee, Halami, Prakash Motiram
Research in microbiology 2017 v.168 no.8 pp. 722-731
Lactobacillus plantarum, biofilm, chickens, fermented foods, food safety, genes, gentamicin, kanamycin, minimum inhibitory concentration, phenotype, risk, sausages, streptomycin
The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6′)Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6′)Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products.