Main content area

A high fat diet enriched with sea cucumber gut powder provides cardio-protective and anti-obesity effects in C57BL/6 mice

Gangadaran, Surendiran, Cheema, Sukhinder Kaur
Food research international 2017 v.99 pp. 799-806
Holothuroidea, adiponectin, adipose tissue, animal models, blood glucose, body weight changes, cholesterol, excretion, food intake, free fatty acids, freeze drying, functional foods, gene expression, high fat diet, insulin resistance, interleukin-6, liver, males, messenger RNA, mice, obesity, small intestine, toxicity, triacylglycerols
We have previously reported that sea cucumber (SC) inhibits fat accumulation and insulin resistance in 3T3-L1 cells. The present study investigated the anti-obesity and cardio-protective effects of SC freeze-dried gut powder using C57BL/6 as an animal model. Male mice were fed a normal chow diet, a high fat diet (HFD) or a HFD enriched with 2.5, 5 or 7.5% SC gut powder for 4, 8 and 12weeks. Diets enriched with SC caused a significant reduction in body weight gain and fat weight, compared to the HFD, without affecting food intake. Both 2.5% and 5% SC treatment showed a significant reduction in plasma glucose, triacylglycerol (TG), total cholesterol (TC) and non-esterified fatty acids, compared to the HFD. However, animals fed the 7.5% SC diet showed an increase in liver weight, liver TG and TC, compared to the HFD diet. Diets enriched with 2.5% SC caused an increase in adiponectin mRNA expression in adipose tissue and reduced plasma interleukin-6, compared to the HFD diet. Fecal cholesterol excretion increased after 2.5% SC treatment, coinciding with an increase in ATP-binding cassette-5 and -8 mRNA expression in the small intestine. Although both 2.5 and 5% SC treatment caused weight and fat reduction to a similar extent, 2.5% SC was more effective at improving the metabolic profile. None of the tested SC doses caused any toxic effects. Our findings demonstrate for the first time that SC freeze-dried gut powder has the potential as a nutraceutical to target obesity and related disorders.