U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Physicochemical properties of pectin from green jelly leaf (Cyclea barbata Miers)

O. Yuliarti, S.Y. Chong, K.K.T. Goh
International journal of biological macromolecules 2017 v.103 pp. 1146-1154
Cyclea, Fourier transform infrared spectroscopy, ambient temperature, calcium, crushing, esterification, galacturonic acid, gelation, gels, leaves, magnesium, minerals, molecular weight, pectins, sodium alginate, zeta potential, zinc
The water extract of Green Jelly leaves (GJL) obtained by crushing the leaves in water (1:40) was capable of forming a gel at room temperature. The composition of GJL consisted mainly of carbohydrate (∼70w/w), protein (∼13% w/w) and minerals (∼6% w/w). The mineral portion consisted of mainly calcium (∼1.2% w/w), zinc (∼0.12% w/w) and magnesium (∼0.11% w/w). The isolated polysaccharide fraction (∼42.6% w/w) consisted of mainly galacturonic acid (∼35.8% w/w) and neutral sugars (∼6.8% w/w), with a weight-average molecular weight of ∼4.4×105g/mol. The results obtained by Fourier Transform Infra-Red (FTIR) showed that GJL polysaccharide fraction had a fairly similar FTIR fingerprint as the commercial low-methoxyl pectin (LMP). The degree of esterification of the polysaccharide changed drastically (from 97% to 10%) depending on the temperature used during the extraction process. The zeta potential of the extracted polysaccharide showed high negative charged as compared to the commercial LMP but close to sodium alginate. The study showed that the gelation was divalent cation-mediated and probably facilitated by the low degree of esterification which reduced steric hindrance from the methyl ester groups.