PubAg

Main content area

Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity

Author:
ANTUNES, WERNER C., PROVART, NICHOLAS J., WILLIAMS, THOMAS C. R., LOUREIRO, MARCELO E.
Source:
Plant, cell and environment 2012 v.35 no.4 pp. 747-759
ISSN:
0140-7791
Subject:
Solanum tuberosum, adenosine triphosphate, beta-fructofuranosidase, carbon dioxide, engineering, gas exchange, genes, guard cells, irrigation, photosynthesis, potatoes, solutes, stomata, stomatal conductance, sucrose, sucrose synthase, water use efficiency, yeasts
Abstract:
As water availability for agriculture decreases, breeding or engineering of crops with improved water use efficiency (WUE) will be necessary. As stomata are responsible for controlling gas exchange across the plant epidermis, metabolic processes influencing solute accumulation in guard cells are potential targets for engineering. In addition to its role as an osmoticum, sucrose breakdown may be required for synthesis of other osmotica or generation of the ATP needed for solute uptake. Thus, alterations in partitioning of sucrose between storage and breakdown may affect stomatal function. In agreement with this hypothesis, potato (Solanum tuberosum) plants expressing an antisense construct targeted against sucrose synthase 3 (SuSy3) exhibited decreased stomatal conductance, a slight reduction in CO2 fixation and increased WUE. Conversely, plants with increased guard cell acid invertase activity caused by the introduction of the SUC2 gene from yeast had increased stomatal conductance, increased CO2 fixation and decreased WUE. 14CO2 feeding experiments indicated that these effects cannot be attributed to alterations in photosynthetic capacity, and most likely reflect alterations in stomatal function. These results highlight the important role that sucrose breakdown may play in guard cell function and indicate the feasibility of manipulating plant WUE through engineering of guard cell sucrose metabolism.
Agid:
570940