PubAg

Main content area

Above‐ and belowground insect herbivory modifies the response of a grassland plant community to nitrogen eutrophication

Author:
Borgström, Pernilla, Strengbom, Joachim, Marini, Lorenzo, Viketoft, Maria, Bommarco, Riccardo
Source:
Ecology 2017 v.98 no.2 pp. 545-554
ISSN:
0012-9658
Subject:
botanical composition, ecosystems, environmental impact, eutrophication, field experimentation, forbs, global change, grasslands, herbivores, insects, nitrogen, phytomass, plant communities, prediction
Abstract:
Understanding the role that species interactions play in determining the rate and direction of ecosystem change due to nitrogen (N) eutrophication is important for predicting the consequences of global change. Insects might play a major role in this context. They consume substantial amounts of plant biomass and can alter competitive interactions among plants, indirectly shaping plant community composition. Nitrogen eutrophication affects plant communities globally, but there is limited experimental evidence of how insect herbivory modifies plant community response to raised N levels. Even less is known about the roles of above‐ and belowground herbivory in shaping plant communities, and how the interaction between the two might modify a plant community's response to N eutrophication. We conducted a 3‐yr field experiment where grassland plant communities were subjected to above‐ and belowground insect herbivory with and without N addition, in a full‐factorial design. We found that herbivory modified plant community responses to N addition. Aboveground herbivory decreased aboveground plant community biomass by 21%, but only at elevated N. When combined, above‐ and belowground herbivory had a stronger negative effect on plant community biomass at ambient N (11% decrease) than at elevated N (4% decrease). In addition, herbivory shifted the functional composition of the plant community, and the magnitude of the shifts depended on the N level. The N and herbivory treatments synergistically conferred a competitive advantage to forbs, which benefited when both herbivory types were present at elevated N. Evenness among the plant species groups increased when aboveground herbivory was present, but N addition attenuated this increase. Our results demonstrate that a deeper understanding of how plant–herbivore interactions above and below ground shape the composition of a plant community is crucial for making reliable predictions about the ecological consequences of global change.
Agid:
5712435