PubAg

Main content area

Tuned protection of aphids by ants against a predatory hoverfly

Author:
DETRAIN, CLAIRE, FICHAUX, MELANIE, VERHEGGEN, FRANÇOIS
Source:
Ecological entomology 2017 v.42 no.3 pp. 235-244
ISSN:
0307-6946
Subject:
Aphis fabae, Episyrphus balteatus, Lasius niger, aggression, ant nests, aphidophagous predators, defensive secretions, eggs, honeydew, host plants, insects, instars, integrated pest management, larvae, morbidity, secretion, toxicity
Abstract:
1. Aphid‐tending ants that feed on honeydew have evolved strategies against aphidophagous insects and tune their aggressive behaviour according to the level of danger for their trophobionts. Here we investigate how Lasius niger Linnaeus (Hymenoptera: Formicidae) ants react to different instars of Episyrphus balteatus De Geer (Diptera: Syrphidae) hoverflies which vary in their voracity and defensive abilities. 2. During pairwise encounters, early syrphid instars (eggs, L1, and L2 larvae) elicited lower aggression scores compared to third larval instars (L3), which was intensively bitten by ants. L3 tried to escape from ants by releasing a sticky and toxic secretion over biting ants that died or underwent severe morbidity. 3. In a standardised system including the host plant, aphid, tending ant, and hoverfly, the ability of ants to protect an Aphis fabae Scopoli (Hemiptera: Aphididae) colony was evaluated. Early E. balteatus instars placed onto the plant elicited no mobilisation of ants, which often removed the hoverfly successfully. Eggs and early instars appeared as the weak links for integrated pest management by hoverfly auxiliaries. 4. In contrast, L3 induced the number of ant patrollers to increase at a local scale without any further recruitment from inside the ant nest. L3 syrphids were quite efficient at gluing ants with defensive secretions and at resisting to removal attempts by ants. 5. While supporting the assumption that ants tune their defensive response to the aphidophagous predator, the present results also showed a lack of efficient protection of their trophobionts from the most voracious late syrphid instar.
Agid:
5718286