Main content area

The effects of threshing and redrying on bacterial communities that inhabit the surface of tobacco leaves

Ye, Jianbin, Yan, Ji, Zhang, Zhan, Yang, Zongcan, Liu, Xiangzhen, Zhou, Hao, Wang, Genfa, Hao, Hui, Ma, Ke, Ma, Yuping, Mao, Duobin, Yang, Xuepeng
Applied microbiology and biotechnology 2017 v.101 no.10 pp. 4279-4287
Lactococcus, Pantoea, Sphingomonas, Stenotrophomonas, bacteria, bacterial communities, leaves, temperature, tobacco
Before being subjected to the aging process, raw tobacco leaves (TLs) must be threshed and redried. We propose that threshing and redrying affect the bacterial communities that inhabit the TL surface, thereby influencing the aging process. However, these effects remain unclear. In this study, Illumina sequencing was applied to analyze the bacterial communities on both raw and redried TLs. Shannon’s diversity value decreased from 3.38 to 2.52 after the threshing and redrying processes, indicating a large reduction in TL bacterial diversity. The bacterial communities also largely differed between raw TLs and redried TLs. On unaged raw TLs, Proteobacteria was the most dominant phylum (56.15%), followed by Firmicutes (38.99%). In contrast, on unaged redried TLs, Firmicutes (76.49%) was the most dominant phylum, followed by Proteobacteria (21.30%). Thus, the dominant genus Proteobacteria, which includes Sphingomonas, Stenotrophomonas, and Pantoea, decreased after the threshing and redrying processes, while the dominant genus Firmicutes, which includes Bacillus and Lactococcus, increased. Changes in the bacterial communities between raw and redried TLs were also noted after 1 year of aging. The relative abundance of dominant Proteobacteria taxa on raw TLs decreased from 56.15 to 16.92%, while the relative abundance of Firmicutes taxa increased from 38.99 to 79.10%. However, small changes were observed on redried TLs after 1 year of aging, with a slight decrease in Proteobacteria (21.30 to 17.64%) and a small increase in Firmicutes (76.49 to 79.10%). Based on these results, Firmicutes taxa may have a higher tolerance for extreme environments (such as high temperature or low moisture) than Proteobacteria bacteria. This study is the first report to examine the effects of threshing and redrying on bacterial communities that inhabit TLs.