Main content area

Heavy metals in the riverbed surface sediment of the Yellow River, China

Guan, Qingyu, Cai, Ao, Wang, Feifei, Wang, Lei, Wu, Tao, Pan, Baotian, Song, Na, Li, Fuchun, Lu, Min
Environmental science and pollution research international 2016 v.23 no.24 pp. 24768-24780
anthropogenic activities, chromium, cobalt, copper, correlation, heavy metals, industrialization, manganese, nickel, pollution load, principal component analysis, risk, sediments, stream channels, titanium, vanadium, zinc, China, Yellow River
One hundred and eleven riverbed surface sediment (RSS) samples were collected to determine the heavy metal concentration throughout the Inner Mongolia reach of the Yellow River (IMYR), which has been subjected to rapid economic and industrial development over the past several decades. Comprehensive analysis of heavy metal contamination, including the enrichment factor, geo-accumulation index, contamination factor, pollution load index, risk index, principal component analysis (PCA), hierarchical cluster analysis (HCA), and Pearson correlation analysis, was performed. The results demonstrated that a low ecological risk with a moderate level of heavy metal contamination was present in the IMYR due to the risk index (RI) being less than 150 and the pollution load index (PLI) being above 1, and the averaged concentrations of Co, Cr, Cu, Mn, Ni, Ti, V, and Zn in the RSS, with standard deviations, were 144 ± 69, 77.91 ± 39.28, 22.95 ± 7.67, 596 ± 151, 28.50 ± 8.01, 3793 ± 487, 69.11 ± 18.44, and 50.19 ± 19.26 mg kg⁻¹, respectively. PCA, HCA, and Pearson correlation analysis revealed that most of the RSS was heavily contaminated with Zn, Ni, and Cu, due to the influence of anthropogenic activities; moderately contaminated with Ti, Mn, V and Cr because of the dual influence of anthropogenic activities and nature; and slightly to not contaminated with Co because it occurs mainly in the bordering desert areas. Graphic abstract ᅟ