U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons

Shan Jiang, Feng Xie, Haoliang Lu, Jingchun Liu, Chongling Yan
Environmental science and pollution research international 2017 v.24 no.13 pp. 12484-12493
sediments, Aegiceras corniculatum, metabolism, phenanthrenes, bioavailability, root exudates, exudation, Kandelia, toxicity, oxalic acid
Low-molecular-weight organic acids (LMWOAs) represent an important component of root exudates. They play a pivotal role in the degradation of polycyclic aromatic hydrocarbons (PAHs) in sediments as they influence PAH bioavailability and degrader colonization. This study examined variations of LMWOAs in mangrove root exudates (Aegiceras corniculatum and Kandelia obovata) after exposure in phenanthrene and pyrene solution for 7 and 40 days, respectively. After 7 days of treatment, total root exudates and six types of LMWOA in root exudates from both mangrove species were enhanced. The largest increase was found in oxalic acid, i.e., the dominant component in determined LMWOAs. Coupled with the enhancement in LMWOA exudation rates, root metabolism intensities, measured as the dehydrogenase activity, increased. In contrast, after 40 days of exposure, the exudation rate of total LMWOAs had dropped markedly in PAH-contaminated groups compared to the control, indicating that PAHs negatively impacted root metabolism and activities due to their toxicity. The largest decrease was also found in oxalic acid, suggesting that the biological reactions related with oxalic acid are vulnerable under PAH stresses.