Main content area

Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

MacCarthy, Michael F., Carpenter, Jacob D., Mihelcic, James R.
Hydrogeology journal 2017 v.25 no.5 pp. 1477-1490
developing countries, drinking water, energy, females, groundwater, males, Uganda
In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93–111%), but less so at deeper depths (63–85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47–97%). Cost of materials to construct the EMAS Pump were 21–60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in “self-supply” groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.