Main content area

Meshfree Multiquadric Solution for Real Field Large Heterogeneous Aquifer System

Patel, Sharad, Rastogi, A. K.
Water resources management 2017 v.31 no.9 pp. 2869-2884
aquifers, groundwater, groundwater flow, hydraulic conductivity, hydrologic models, system optimization, water management, India
Meshfree methods are often tested in literature for the rectangular domain with uniform aquifer properties (e.g. transmissivity or hydraulic conductivity) and constant groundwater head boundary conditions. In this paper, a multiquadric meshfree (Mfree) groundwater model is developed for a real field irregular domain aquifer system which is capable of incorporating variability like heterogeneity, temporally and spatially varied groundwater head and flow boundary conditions. The developed model is free from the inadequacy of meshing which eventually saves the time on computing resources by calculating the groundwater head-derivatives at different nodes sprinkled over the entire flow domain. Initially, two synthetic problems with pre- existing analytical and grid based results are tested against the presented model. Sensitivity analysis of different parameters like time step size, nodal density and support size of basis function are also investigated. Subsequently Mfree solutions are obtained for a large Mahi Right Bank Canal (MRBC) unconfined aquifer located in Gujarat India. The Mfree solution performance on two synthetic and one real field large aquifer problem revealed that the projected method is advantageous over other grid based simulator in terms of computational time consideration. Such a simulation is preferable in groundwater management models where flow models are coupled with the optimization problem.