Main content area

Adsorption of Surface-Modified Silica Nanoparticles to the Interface of Melt Poly(lactic acid) and Supercritical Carbon Dioxide

Sarikhani, K., Jeddi, K., Thompson, R. B., Park, C. B., Chen, P.
Langmuir 2015 v.31 no.20 pp. 5571-5579
adsorption, carbon dioxide, contact angle, energy, foams, melting, nanoparticles, polylactic acid, polymer nanocomposites, scanning electron microscopy, silica, surface tension, temperature
With the purpose of fabricating polymer nanocomposite foams and preventing coalescence in foaming processes, the interfacial tension of poly(lactic acid) (PLA)–silica composites is investigated in this work. Synthesized silica nanoparticles (SNs) with a CO₂-philic surface modification are used as the dispersed nanoparticles. Interfacial tension is a key parameter in processing of polymer foams since it directly affects the final foam properties, such as cell size and cell density. Interfacial tension of silica-containing PLA and supercritical carbon dioxide (CO₂) is measured using axisymmetric drop shape analysis profile (ADSA-P) pendant drop method at high pressures and high temperatures. The interfacial tension between PLA and supercritical CO₂ is observed to decrease as a result of the nanoparticles’ adsorption to the interface. These results indicate that the reduction in interfacial tension with increasing silica content significantly deviates from a linear trend; there is a minimum at 2 wt % loading of the SNs and then the interfacial tension curve reaches a plateau. Contact angle measurements show an affinity of the SNs for the polymer-supercritical CO₂ interface, and these obtained results are used to calculate the binding energy of the nanoparticles to the PLA/CO₂ interface. In addition to interfacial properties, the adsorption of silica nanoparticles at the interface is also studied in detail with scanning electron microscopy.