Main content area

The preventive effects of taurine on neural tube defects through the Wnt/PCP-Jnk-dependent pathway

Zhang, Qinghua, Liu, Yang, Wang, Hui, Ma, Li, Xia, Hechun, Niu, Jianguo, Sun, Tao, Zhang, Li
Amino acids 2017 v.49 no.9 pp. 1633-1640
Western blotting, apoptosis, body weight, caspases, cell proliferation, cell viability, drinking, fluorescent antibody technique, glutamic acid, immunohistochemistry, mice, models, neural tube defects, neurons, protective effect, retinoic acid, taurine
The aim of this study was to clarify the protective role of taurine in neuronal apoptosis and the role of the Wnt/PCP-Jnk pathway in mediating the preventive effects of taurine on neural tube defects (NTDs). HT-22 cells (a hippocampal neuron cell line) were divided into a control group, a glutamate-induced apoptosis group, and glutamate (4.0 mmol/L) plus low-dose taurine (L; 0.5 mmol/L) and high-dose taurine (H; 2.0 mmol/L) groups. The MTT assay was used to monitor cell proliferation and cell survival. Immunofluorescence and Western blot analyses were used to determine caspase 9 expression. Retinoic acid (RA) induced embryonic NTDs in Kunming mice, thus establishing an NTD model. Pregnant mice were divided into a control group, an RA (30 mg/kg body weight) group, and an RA (30 mg/kg body weight) plus taurine (free drinking of 2 g/L solution) group. Immunohistochemistry and Western blot analyses were used to detect the expression of Dvl, RhoA and phosphorylated (p)-Jnk/Jnk in the embryonic neural tubes. In HT-22 cells, the apoptosis rate was significantly higher and caspase 9 activation was also significantly increased in the glutamate-induced apoptosis group compared to the L and H taurine groups. In the NTD model, the expression levels of Dvl, RhoA, and p-Jnk were significantly higher in the RA group than in the control group, whereas they were significantly reduced in the RA + taurine group. This study suggests that taurine has positive effects on neuronal protection and NTD prevention. Moreover, the Wnt/PCP-Jnk-dependent pathway plays an important role in taurine-mediated prevention of NTDs.