Main content area

Docosahexaenoic Acid and Eicosapentaenoic Acid Did not Alter trans-10,cis-12 Conjugated Linoleic Acid Incorporation into Mice Brain and Eye Lipids

Vemuri, Madhuri, Adkins, Yuriko, Mackey, Bruce E., Kelley, Darshan S.
Lipids 2017 v.52 no.9 pp. 763-769
brain, conjugated linoleic acid, dietary fat, docosahexaenoic acid, eicosapentaenoic acid, eyes, fatty acid composition, females, mice, tissues
trans 10,cis 12-CLA has been reported to alter fatty acid composition in several non-neurological tissues, but its effects are less known in neurological tissues. Therefore, the purpose of this study was to determine if CLA supplementation would alter brain and eye fatty acid composition and if those changes could be prevented by concomitant supplementation with docosahexaenoic acid (DHA; 22:6n3) or eicosapentaenoic acid (EPA; 20:5n3). Eight-week-old, pathogen-free C57BL/6N female mice (n = 6/group) were fed either the control diet or diets containing 0.5% (w/w) t10,c12-CLA in the presence or absence of either 1.5% DHA or 1.5% EPA for 8 weeks. CLA concentration was significantly (P < 0.05) greater in the eye but not in the brain lipids of the CLA group when compared with the control group. The sums of saturated, monounsaturated, polyunsaturated fatty acids, and n3:n6 ratio did not differ between these two groups for both tissues. The n3:n6 ratio and concentrations of 20:5n3 and 22:5n3 were significantly greater, and those of 20:4n6, 22:4n6, and 22:5n6 were lesser in the CLA + DHA and CLA + EPA groups than in the control and CLA groups for either tissue. DHA concentration was higher in the CLA + DHA group only but not in the CLA + EPA group when compared with the CLA group for both tissues. The dietary fatty acids generally induced similar changes in brain and eye fatty acid concentration and at the concentrations used both DHA and EPA fed individually with CLA were more potent than CLA alone in altering the tissue fatty acid concentration.