PubAg

Main content area

Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics

Author:
Bligh, Mark W., Maheshwari, Pradeep, David Waite, T.
Source:
Water research 2017 v.124 pp. 341-352
ISSN:
0043-1354
Subject:
adsorption, alginates, animal feeding operations, ferric oxide, iron, light scattering, membrane bioreactors, models, molecular weight, organic compounds, oxidation, oxides, particle size, phosphates, phosphorus, sludge, wastewater treatment
Abstract:
Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1–60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5–10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging observed in the alginate system did not occur. The reactivity of the Fe(III) in the supernatant system was maintained with little loss in reactivity over at least 24 h. The capacity of SMPs to maintain high reactivity of AFO has important implications in a reactor where Fe(III) phases encounter alternating redox conditions due to sludge recirculation, creating a cycle of reductive dissolution, oxidation and precipitation.
Agid:
5809801