PubAg

Main content area

A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey A

Author:
Silva, Pedro, Silva, Catarina L., Perestrelo, Rosa, Nunes, Fernando M., Câmara, José S.
Source:
Journal of chromatography 2017
ISSN:
0021-9673
Subject:
Monte Carlo method, acetonitrile, adulterated products, case studies, food analysis, food matrix, honey, manufacturing, microextraction, models, sensory properties, solvents, sorbents, storage conditions, sugarcane, temperature, ultra-performance liquid chromatography, variance, volatile compounds
Abstract:
Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin−1. The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg−1. The MEPSR-CX/UHPLCCORTECS-PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products.
Agid:
5814132