PubAg

Main content area

An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill

Author:
Chen, Qing-Lin, Li, Hu, Zhou, Xin-Yuan, Zhao, Yi, Su, Jian-Qiang, Zhang, Xian, Huang, Fu-Yi
Source:
The Science of the total environment 2017 v.609 pp. 966-973
ISSN:
0048-9697
Subject:
antibiotic resistance, bacterial communities, beta-lactams, bioreactors, genes, genetic resistance, groundwater, hosts, interspersed repetitive sequences, landfill leachates, landfills, municipal solid waste, public health, quantitative polymerase chain reaction, resistance mechanisms, risk, tetracycline
Abstract:
Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance. Antibiotic resistance genes (ARGs) in landfill can flow to the environment through leakage of landfill leachate and pose a risk to public health. Using high throughput quantitative Polymerase Chain Reaction (HT-qPCR), we investigated the prevalence, diversity of ARGs and its association with various mobile genetic elements (MGEs) in MSW landfill groundwater. Totally 171 unique ARGs (belonging to 9 ARG types, encompassing 3 major resistance mechanisms) and 8 MGEs (6 transposase genes, and 2 integron-integrase genes) were identified. The normalized abundance of ARG was ranging from 0.24 to 5.66 copies/cell with multidrug, beta-lactams and tetracycline resistance genes being the most abundant ARG types. The co-occurrence pattern and significant correlation between MGEs and ARGs, indicated that MGEs may play an important role in the persistence and proliferation of ARGs. A Mantel test and Procrustes analysis suggested that ARG profiles were significantly correlated with bacterial community. Variation partitioning analysis (VPA) further demonstrated that bacterial community shifts contribute 65.8% of the total ARG variations. Additionally network analysis revealed that 15 bacterial taxa at family level might be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater.
Agid:
5815723