U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Coping with Uncertainty: Nutrient Deficiencies Motivate Insect Migration at a Cost to Immunity

Robert B. Srygley, Patrick D. Lorch
Integrative and comparative biology 2013 v.53 no.6 pp. 1002-1013
Anabrus simplex, blood, blood sampling, captive animals, capture of animals, carbohydrates, climate, disease resistance, energy requirements, enzyme activity, feed intake, high carbohydrate diet, high protein diet, immune system, immunity, lysozyme, migratory behavior, monophenol monooxygenase, nutrient deficiencies, nutrients, pathogens, proteins, radio transmitters, uncertainty, vitamins, water
Migration often is associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migratory movements and enhances specific aspects of their immune systems. Migrants deficient in proteins have less spontaneous phenoloxidase (PO) activity, whereas those deficient in carbohydrates have lower lysozyme-like anti-bacterial titers with a proposed compromise between migratory and anti-bacterial activities. To investigate the relationship between diet, movement, and immunity further, we removed Mormon crickets from a migratory band and offered each cricket one of five diets: high protein, high carbohydrate, equal weight of proteins and carbohydrates (P + C), vitamins only, or water only for 1 h. We then attached a radio, returned each to the migratory band, and recaptured them 18–24 h later. Mormon crickets fed protein moved the furthest, those with only water or only vitamins moved less, and those fed carbohydrates or P + C moved the least. Standard intake trials also indicated that the Mormon crickets were deficient in carbohydrates. Consistent with a previous study, lysozyme-like anti-bacterial activity was greatest in those fed carbohydrates, and there was no difference between those fed water, protein, or P + C. Crickets were removed from the same migratory band and fed one of four diets: high P, high C, P + C, or vitamins only, for 1 h. Then the crickets were held in captivity with water only for 4 or 24 h before blood was drawn. Immunity measures did not differ between times of draw. Diet treatments had no effect on anti-bacterial activity of captive Mormon crickets, whereas total PO was greater in those fed protein. These results support the hypothesis of a direct compromise between migratory and anti-bacterial activities, whereas PO is compromised by low protein independent of migratory activities. We discuss the potential effects of climate on nutritional deficits and susceptibility to different pathogens.