Main content area

Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4

Wang, Shaohua, Dong, Sheng, Wang, Yi
Bioresource technology 2017 v.245 pp. 426-433
Clostridium saccharoperbutylacetonicum, butanol, ethanol production, fermentation, gene overexpression, operon, solvents
Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol producing strain. However, little information is available concerning its butanol production mechanism and the development of more robust strains. In this study, key biosynthetic genes (either endogenous or exogenous) including the sol operon (bld-ctfA-ctfB-adc), adhE1, adhE1D485G, thl, thlA1V5A, thlAV5A and the expression cassette EC (thl-hbd-crt-bcd) were overexpressed in C. saccharoperbutylacetonicum N1-4 to evaluate their potential in enhancement of butanol production. The overexpression of sol operon increased ethanol production by 400%. The overexpression of adhE1 and adhED485G resulted in a 5.6- and 4.9-fold higher ethanol production, respectively, producing final acetone-butanol-ethanol (ABE) titers (30.6 and 30.1gL−1) of among the highest as ever reported for solventogenic clostridia. The most significant increase of butanol production (by 13.7%) and selectivity (73.7%) was achieved by the overexpression of EC. These results provides a solid foundation and essential references for the further development of more robust strains.