PubAg

Main content area

Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction

Author:
Reinbothe, Christiane, Bakkouri, Majida El, Buhr, Frank, Muraki, Norifumi, Nomata, Jiro, Kurisu, Genji, Fujita, Yuichi, Reinbothe, Steffen
Source:
Trends in plant science 2010 v.15 no.11 pp. 614-624
ISSN:
1360-1385
Subject:
Algae, Bryopsida, Coniferophyta, Cyanobacteria, Magnoliophyta, Rhodobacter capsulatus, Rhodobacter sphaeroides, biochemical pathways, biosynthesis, chlorophyll, energy, photosynthetic bacteria, trapping
Abstract:
Photosynthetic organisms require chlorophyll or bacteriochlorophyll for their light trapping and energy transduction activities. The biosynthetic pathways of chlorophyll and bacteriochlorophyll are similar in most of their early steps, except for the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas angiosperms make use of a light-dependent enzyme, cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms contain an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase (DPOR). Anoxygenic photosynthetic bacteria such as Rhodobacter capsulatus and Rhodobacter sphaeroides rely solely on DPOR. Recent atomic resolution of reductase and catalytic components of DPOR from R. sphaeroides and R. capsulatus, respectively, have revealed their similarity to nitrogenase components. In this review, we discuss the two fundamentally different mechanisms of Pchlide reduction in photosynthetic organisms.
Agid:
582122