Main content area

The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon Salmo salar

Good, Christopher, Davidson, John, Earley, Ryan L., Styga, Joseph, Summerfelt, Steven
Aquacultural engineering 2017 v.79 pp. 9-16
Salmo salar, biofilters, enzyme immunoassays, estradiol, females, fish, males, oxygen, ozonation, ozone, recirculating aquaculture systems, sexual maturity, steroid hormones, testosterone, water quality
Steroid hormones have been shown to accumulate in recirculation aquaculture system (RAS) water over time; however, their influence on the reproductive physiology of fish within RAS remains unknown. Whether ozonation impacts waterborne hormone levels in RAS has likewise not been fully evaluated. To this end, a controlled 3-month study was conducted in 6 replicated RAS containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether ozone, as typically applied in RAS to improve water quality, is associated with a reduction in waterborne hormones. Post-smolt Atlantic salmon (1253±15g) were stocked into each RAS; 109 of 264 fish placed in each system were sexually mature males, and 5 were mature females. Water ozonation, controlled using an ORP set-point of 290–300mV, was applied with the pure oxygen feed gas within the low-head oxygenators of 3 randomly selected RAS, while the remaining 3 RAS did not receive ozone. The RAS hydraulic retention time was 6.9±0.3 days. Study fish were raised under these conditions for 12 weeks; during weeks 10 and 12, triplicate water samples were collected from the following locations in each RAS: i) culture tank, ii) makeup water, iii) pre-biofilter, iv) post-biofilter, and v) post-gas conditioning. Concentrations of 3 waterborne hormones – testosterone, 11-ketotestosterone (11-KT), and estradiol (17β-estradiol) – were quantified using enzyme immunoassays (EIA). Estradiol was significantly reduced by ozonation; testosterone and 11-KT were also reduced by ozonation, although these reductions were not observed across all sampling locations and events. Testosterone and 11-KT concentrations, however, were significantly reduced following water passage through the biofilters of both ozonated and non-ozonated RAS. The results of this study demonstrate the potential for ozone to be used in RAS as a means of preventing the accumulation of steroid hormones. Further research is required to assess whether reducing hormones in this manner impacts precocious sexual maturation in RAS-produced Atlantic salmon.