Main content area

Adaptive reservoir flood limited water level for a changing environment

Zhang, Xiaoqi, Liu, Pan, Wang, Hao, Lei, Xiaohui, Yin, Jiabo
Environmental earth sciences 2017 v.76 no.21 pp. 743
case studies, climate change, floods, humans, risk, stream flow, China
As streamflow is non-stationary due to climate change and human activities, adapting reservoir operation in the changing environment is of significant importance. Specifically, the flood limited water level (FLWL) needs to be re-established to ensure flood safety when the reservoir inflow is altered. The aims of this study are: (1) to clarify the relationship between the FLWL and streamflow when statistical parameters of the flood peak and volume vary through time and (2) to re-establish the FLWL when the reservoir inflow changes under the non-stationary condition. The adaptive FLWL is derived based on flood routing of non-stationary design floods, and the flood risk probability is then estimated. With China’s Three Gorges Reservoir (TGR) as a case study, the changing pattern of FLWL is quantified when statistical parameters (i.e., mean, [Formula: see text] and [Formula: see text]) of design floods have a linear temporal trend. The results indicate that the FLWL is sensitive with design floods, i.e., (1) means of design flood peak, 3-day volume, 7-day volume, 15-day volume and 30-day volume yearly decrease by 33 m³/s, 0.008, 0.021, 0.482 and 0.905 billion m³, respectively, (2) when the non-stationary design flood is used, the cumulative flood risk probability of the reservoir water level exceeding 175.0 m during 2011–2030 decreases from 1.98 to 1.82% with the conventional FLWL scheme and (3) the FLWL of the TGR could be re-set without increasing the flood risk probability, and the FLWL would increase about 4.7 m by 2030 in this non-stationary streamflow scenario. These findings are helpful to derive the FLWL in a changing environment.