U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

Heidi Webber, Jeffrey W. White, Bruce A. Kimball, Frank Ewert, Senthold Asseng, Ehsan Eyshi Rezaei, Paul J. Pinter, Jerry L. Hatfield, Matthew P. Reynolds, Behnam Ababaei, Marco Bindi, Jordi Doltra, Roberto Ferrise, Henning Kage, Belay T. Kassie, Kurt-Christian Kersebaum, Adam Luig, Jørgen E. Olesen, Mikhail A. Semenov, Pierre Stratonovitch, Arne M. Ratjen, Robert L. LaMorte, Steven W. Leavitt, Douglas J. Hunsaker, Gerard W. Wall, Pierre Martre
Field crops research 2018 v.216 pp. 75-88
air temperature, canopy, carbon dioxide, climate change, crop models, data collection, empirical models, energy balance, heat stress, model validation, nitrogen, prediction, soil water, North America
Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.