Main content area

Effect of Zinc and Melatonin on Oxidative Stress and Serum Inhibin-B Levels in a Rat Testicular Torsion–Detorsion Model

Semercioz, Atilla, Baltaci, Abdulkerim Kasim, Mogulkoc, Rasim, Avunduk, Mustafa Cihat
Biochemical genetics 2017 v.55 no.5-6 pp. 395-409
adults, blood serum, erythrocytes, ischemia, males, melatonin, models, oxidative stress, rats, testes, zinc
The present study was aimed to examine the effects of 3-week zinc and melatonin administration on testicular tissue injury and serum Inhibin-B levels caused by unilateral testicular torsion–detorsion in rats. The study was performed on 60 Wistar Albino-type adult male rats. The animals were allocated to 6 groups in equal numbers. 1. Control; 2. Sham; 3. Ischemia–reperfusion; 4. Zinc + ischemia–reperfusion; 5. Melatonin + ischemia–reperfusion; 6. Zinc + melatonin + ischemia–reperfusion. Zinc and melatonin were administered before ischemia–reperfusion at doses of 5 and 3 mg/kg respectively, by intraperitoneal route for a period of 3 weeks. Testicular torsion–detorsion procedures consisted of ischemia for 1 h and then reperfusion for another hour of the left testis. Blood and testicular tissue samples were collected to analyze erythrocyte and tissue GSH and plasma and tissue MDA, Inhibin-B levels. The highest erythrocyte and testis GSH values were found in zinc, melatonin, and zinc + melatonin groups (p < 0.001). Torsion–detorsion group has significantly lower erythrocyte GSH levels and higher plasma MDA values (p < 0.001). Serum inhibin-B and spermatogenic activity levels in the torsion–detorsion group were also significantly lower than those in the other groups (p < 0.001). However, zinc-, melatonin-, and melatonin + zinc-supplemented groups have higher inhibin-B and spermatogenetic activity (p < 0.001). The results of the study show that zinc, melatonin, and melatonin + zinc administration partially restores the increased oxidative stress, as well as the reduced inhibin-B and spermatogenic activity levels in testes ischemia–reperfusion in rats. Suppressed inhibin-B levels in the testicular tissue may be a marker of oxidative stress.