U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Molecular characterization of the reniform nematode C-type lectin gene family reveals a likely role in mitigating environmental stresses during plant parasitism

Satish Ganji, Johnie N. Jenkins, Martin J. Wubben
Gene 2014 v.537 pp. 269-278
Heterodera glycines, phylogeny, peptides, immunity, parasitism, binding proteins, transcriptome, signal peptide, Rotylenchulus reniformis, introns, Heligmosomoides polygyrus, females, in situ hybridization, messenger RNA, body regions, complementary DNA, lectins, ice nucleation, reverse transcriptase polymerase chain reaction, edaphic factors, sequence homology
The reniform nematode, Rotylenchulus reniformis, is a damaging semi-endoparasitic pathogen of more than 300 plant species. Transcriptome sequencing of R. reniformis parasitic females revealed an enrichment for sequences homologous to C-type lectins (CTLs), an evolutionarily ancient family of Ca+2-dependent carbohydrate-binding proteins that are involved in the innate immune response. To gain further insight as to the potential role of CTLs in facilitating plant parasitism by R. reniformis, we performed a comprehensive assessment of the CTL gene family. 5′- and 3′-RACE experiments identified a total of 11 R. reniformis CTL transcripts (Rr-ctl-1 through Rr-ctl-11) that ranged in length from 1083 to 1194bp and showed 93–99% identity with one another. An alignment of cDNA and genomic sequences revealed three introns with the first intron residing within the 5′-untranslated region. BLAST analyses showed the closest homologs belonging to the parasitic nematodes Heligmosomoides polygyrus and Heterodera glycines. Rr-ctl-1, -2, and -3 were expressed throughout the R. reniformis life cycle; whereas, the remaining Rr-ctl genes showed life stage-specific expression. Quantitative real time RT-PCR determined that Rr-ctl transcripts were 839-fold higher in sedentary female nematodes than the next most abundant life stage. Predicted Rr-CTL peptides ranged from 301 to 338 amino acids long, possessed an N-terminal signal peptide for secretion, and contained a conserved CLECT domain, including the mannose-binding motifs EPN and EPD and the conserved WND motif that is required for binding Ca+2. In addition, Rr-CTL peptides harbored repeats of a novel 17-mer motif within their C-terminus that showed similarity to motifs associated with bacterial ice nucleation proteins. In situ hybridization of Rr-ctl transcripts within sedentary females showed specific accumulation within the hypodermis of the body regions exposed to the soil environment; those structures embedded within the root during parasitism did not show Rr-ctl expression. A phylogenetic analysis of the Rr-CTL CLECT domain with homologous domains from other nematode species suggested that CTLs from animal- and plant-parasitic genera may have evolved in order to play an active role in the parasitic process.