PubAg

Main content area

Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short‐chain fatty acids

Author:
Hackmann, Timothy J., Ngugi, David Kamanda, Firkins, Jeffrey L., Tao, Junyi
Source:
Environmental microbiology 2017 v.19 no.11 pp. 4670-4683
ISSN:
1462-2912
Subject:
acetates, bacteria, biochemical pathways, butyrates, fermentation, fermented foods, genome, glucose, glycolysis, hexoses, models, propionic acid, rumen, rumen bacteria, short chain fatty acids, succinic acid
Abstract:
Bacteria have been thought to follow only a few well‐recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well‐recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden–Meyerhof–Parnas pathway. This study shows that reconstruction of metabolic pathways – a common goal of omics studies – could be incorrect if well‐recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically.
Agid:
5868026