Main content area

Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis

Lee, Han Yong, Chen, Yi‐Chun, Kieber, Joseph J., Yoon, Gyeong Mee
The plant journal 2017 v.91 no.3 pp. 491-504
1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylic acid, Arabidopsis, abscisic acid, auxins, biosynthesis, brassinosteroids, cytokinins, dimerization, ethylene, ethylene production, gibberellic acid, growth and development, methyl jasmonate, protein metabolism, proteins, salicylic acid, transcription (genetics)
Ethylene influences many aspects of plant growth and development. The biosynthesis of ethylene is highly regulated by a variety of internal and external cues. A key target of this regulation is 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthases (ACS), generally the rate‐limiting step in ethylene biosynthesis, which is regulated both transcriptionally and post‐transcriptionally. Prior studies have demonstrated that cytokinin and brassinosteroid (BR) act as regulatory inputs to elevate ethylene biosynthesis by increasing the stability of ACS proteins. Here, we demonstrate that several additional phytohormones also regulate ACS protein turnover. Abscisic acid, auxin, gibberellic acid, methyl jasmonic acid, and salicylic acid differentially regulate the stability of ACS proteins, with distinct effects on various isoforms. In addition, we demonstrate that heterodimerization influences the stability of ACS proteins. Heterodimerization between ACS isoforms from distinct subclades results in increased stability of the shorter‐lived partner. Together, our study provides a comprehensive understanding of the roles of various phytohormones on ACS protein stability, which brings new insights into crosstalk between ethylene and other phytohormones, and a novel regulatory mechanism that controls ACS protein stability through a heterodimerization of ACS isoforms.